Appunti sul livello 1

Wi-Fi	2
Reti cablate	3
Mezzi fisici	4
Doppino telefonico	4
Cavo coassiale	4
Fibra ottica	5
Modalità di trasmissione	5
Tipi di collegamento	6
Topologie di rete	7

Mezzi trasmissivi

I dispositivi possono collegarsi alla rete via radio o per mezzo cablato.

Wi-Fi

Marchio registrato della Wi-Fi Alliance ⇒ gruppo dedito a certificare che i prodotti Wi-Fi rispettino gli **standard wireless IEEE 802.11**

- ⇒ Ogni nuovo standard porta migliora prestazioni, affidabilità e sicurezza
- ⇒ L'hardware deve essere prodotto appositamente per supportare uno standard

I più famosi standard wireless 802.11:

Nome	Anche detto	Anno	Frequenza	Velocità teorica
802.11		1997	2.4 GHz	2 Mbps
802.11a		1997	5 GHz	54 Mbps
802.11b		1999	2.4 GHz	11 Mbps
802.11g		2003	2.4 GHz	54 Mbps
802.11n	Wi-Fi 4	2009	2.4GHz & 5GHz	600 Mbps
802.11ac	Wi-Fi 5	2013	5GHz	3.46 Gbps
802.11ax	Wi-Fi 6	2019	2.4GHz & 5GHz	9.6 Gbps

Reti cablate

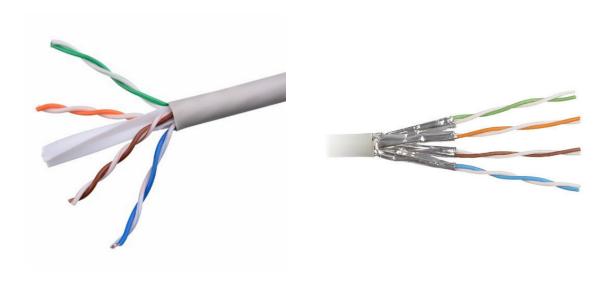
Standard delle reti cablate IEEE 802.3 (Ethernet):

⇒ Velocità da 10 a 1000 Mbps su svariati mezzi (coassiali, doppini intrecciati e fibre ottiche)

Tabella comparativa dei più famosi standard 802.3:

Codice	Standard	Importanti Limitazioni	Velocità
100Base-TX (Fast Ethernet)	802.3		100 Mbps
1000Base-X (Gigabit Ethernet)	Famiglia di implementazioni	(Voci seguenti)	1000 Mbps
1000Base-SX (Fibra ottica multimodale)	802.3z	distanza massima tra 275 m e 550 m	
1000Base-LX (Fibra ottica monomodale)		distanza massima 5 km	
1000Base-T (cavi di rame UTP cat. 5)	802.3ab	distanza massima 100 m	
1000Base-TX (cavi di rame UTP cat. 6)	802.3ab	distanza massima 100 m	

I più comunemente usati sono 100Base-TX (Fast Ethernet) e 1000BaseT (Gigabit ethernet su cavi cat. 5 in rame).


Mezzi fisici

Doppino telefonico

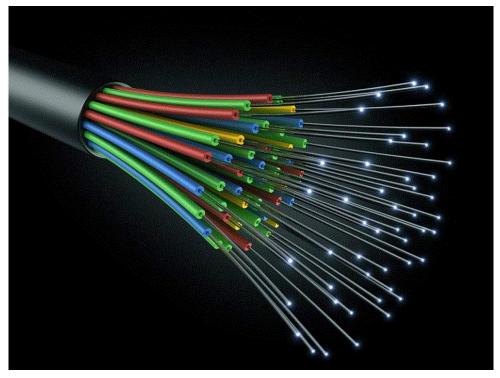
Composto da una o più coppie di cavi di rame intrecciati, racchiusi da una guaina.

In un cavo di rete sono presenti 4 coppie di doppini, che possono essere o non essere schermati contro le interferenze:

Cavo UTP (Unshielded Twisted Pair)

Cavo STP (Shielded Twisted Pair)

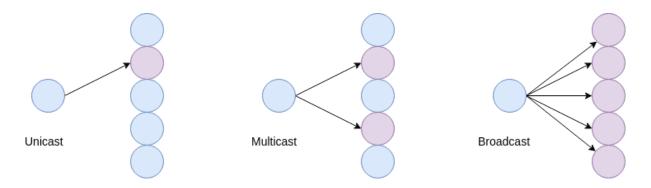
Cavo coassiale


Usato per le prime versioni di ethernet e ormai in disuso, viene ancora usato per il segnale televisivo.

Networking 101: Appunti di fine capitolo morrolinux.it

Fibra ottica

Presenta una serie di sfide, come la necessità di ripetere il segnale ottico ogni (pochi) Km, introducendo latenza, e l'impossibilità di fare curve troppo pronunciate che causerebbero interferenze ottiche.



Il limite teorico in assenza di ripetitori è la velocità della luce nel mezzo trasmissivo!

Modalità di trasmissione

Immaginate una rete con più host interconnessi.

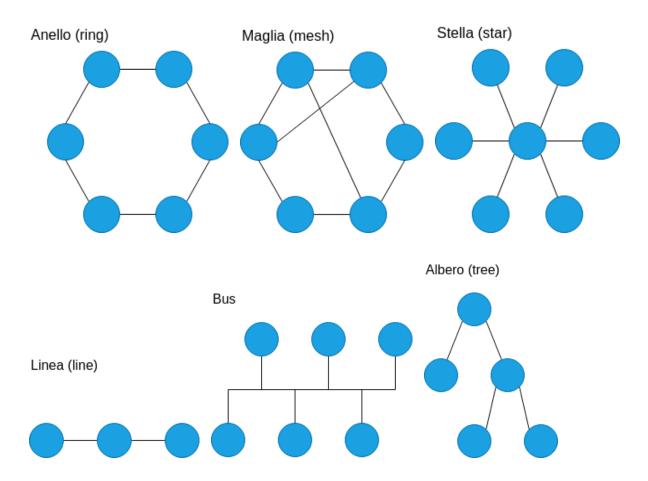
- Unicast: un mittente e un ricevente
- Multicast: un mittente e più riceventi
- Broadcast: un mittente e tutti gli altri host connessi alla suddetta rete.

Tipi di collegamento

Il collegamento fisico tra i nodi **dipende dal mezzo di comunicazione fisico** e può avvenire in due modi:

- Broadcast: tutti i nodi condividono lo stesso canale di comunicazione
- Punto-punto: ogni nodo è collegato ad un solo altro nodo

In un collegamento broadcast:


- Un messaggio <u>inviato da A e destinato a B, verrà ricevuto anche da C,</u> che dovrà scartarlo.
- Comunicazioni simultanee sullo stesso mezzo risultano in sovrapposizioni del segnale distruttive ⇒ Occorre un algoritmo che gestisca le collisioni

In un collegamento punto-punto:

- Un messaggio inviato da A destinato al nodo C dovrà transitare dal nodo B
- Esistono dispositivi apposta a questo scopo.

NB: La modalità di trasmissione non è vincolata al tipo di collegamento! posso avere un collegamento point-to-point ma trasmettere un messaggio broadcast! (che verrà inoltrato a tutti e non verrà scartato da nessuno)

Topologie di rete

La topologia più sensata ed utilizzata al giorno d'oggi è quella a stella, in cui il componente centrale è uno switch che smista i pacchetti (vedremo in seguito).